
B.Tech. III Year CSE II Sem    Artificial Intelligence Unit III 

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 1 
 
 

UNIT III 

Logic Concepts: Introduction, propositional calculus, proportional logic, natural deduction 

system, axiomatic system, semantic tableau system in proportional logic, resolution refutation in 

proportional logic, predicate logic 

 

1.1.Propositional Logic Concepts: 

 Logic is a study of principles used to  

− distinguish correct from incorrect reasoning. 

 Formally it deals with  

− the notion of truth in an abstract sense and is concerned with the principles of 

valid inferencing.  

 A proposition in logic is a declarative statements which are either true or false (but not 

both) in a given context. For example,  

− “Jack is a male”,  

− "Jack loves Mary" etc.  

 Given some propositions to be true in a given context,  

− logic helps in inferencing new proposition, which is also true in the same context.  

 Suppose we are given a set of propositions  such as  

− “It is hot today" and  

− “If it is hot it will rain", then  

− we can infer that   

“It will rain today". 

1.2.Well-formed formula 

 Propositional Calculus (PC) is a language of propositions basically refers  

− to set of rules used  to combine the propositions to form compound propositions 

using logical operators often called connectives such as  , V,  ~,  ,    

 Well-formed formula is defined as: 
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− An atom is a well-formed formula. 

− If   is a well-formed formula, then ~ is a well-formed formula. 

− If   and  are well formed formulae, then (  ),  (  V  ),    (   ),    (  

 )  are also well-formed formulae. 

− A propositional expression is a well-formed formula if and only if  it can be 

obtained by using above conditions. 

1.3.Truth Table 

● Truth table gives us operational definitions of important logical operators.  

− By using truth table, the truth values of well-formed formulae are calculated.  

● Truth table elaborates all possible truth values of a formula.  

The meanings of the logical operators are given by the following truth table. 

        P Q      ~P     P  Q         P V Q         P   Q            P    Q 

T T F T     T     T  T 

T F F F     T     F  F 

F T T F      T     T  F 

F F T F      F     T  T 

1.4.Equivalence Laws: 

Commutation 

 1. P  Q    Q   P 

 2. P  V  Q    Q  V  P 

Association 

 1. P  (Q   R)   (P   Q)    R 

 2. P  V (Q  V  R)   (P  V  Q)  V  R 

Double Negation 

 ~ (~ P)        P 
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Distributive Laws 

 1.    P    ( Q V R)   (P  Q) V (P  R) 

 2. P V ( Q  R)   (P V Q)  (P V R)  

De Morgan’s Laws 

 1. ~ (P  Q)    ~ P  V ~ Q 

 2. ~ (P V Q)    ~ P   ~ Q 

Law of Excluded Middle 

 P  V  ~ P    T (true) 

Law of Contradiction 

 P    ~ P       F (false) 

2. Propositional Logic – PL 

● PL deals with  

− the validity, satisfiability and unsatisfiability of a formula  

− derivation of a new formula using equivalence laws.  

● Each row of a truth table for a given formula is called its interpretation under which a 

formula can be true or false. 

● A formula  is called tautology if and only  

− if  is true for all interpretations.   

● A formula  is also called valid if and only if  

− it is a tautology.  

● Let  be a formula and if there exist at least one interpretation for which  is true,  

− then  is said to be consistent (satisfiable) i.e., if   a model for , then  is said 

to be consistent . 

● A formula  is said to be inconsistent (unsatisfiable), if and only if  

−  is always false under all interpretations. 
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● We can translate  

− simple declarative and  

conditional (if .. then) natural language sentences into its corresponding propositional formulae. 

Example 

● Show that " It is humid today and if it is humid then it will rain so it will rain today"   is a 

valid argument. 

● Solution: Let us symbolize English sentences by propositional atoms as follows:   

  A  :  It is humid  

  B  :  It will rain 

● Formula corresponding to a text:  

   : ((A     B)     A)  B  

● Using truth table approach, one can see that  is true under all four interpretations and 

hence is valid argument. 

 

 

 

 

 

 

 

 

● Truth table method for problem solving is  

− simple and straightforward and  

− very good at presenting a survey of all the truth possibilities in a given situation.  

● It is an easy method to evaluate  

 

Truth Table for ((A     B)     A)  B 

A B A   B = X X  A =  Y Y B 

T T T T T 

T F F F T 

F T T F T 

F F T F T 
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− a consistency, inconsistency or validity of a formula, but the size of truth table 

grows exponentially.  

− Truth table method is good for small values of n.  

● For example, if a formula contains n atoms, then the truth table will contain 2
n
 entries.  

− A formula   : (P   Q  R)  ( Q V S) is valid can be proved using truth table. 

− A table of 16 rows is constructed and the truth values of   are computed. 

− Since the truth value of  is true under all 16 interpretations, it is valid. 

● It is noticed that if P  Q  R is false, then  is true because of the definition of .  

● Since P  Q  R is false for 14 entries out of 16, we are left only with two entries to be 

tested for which  is true.  

− So in order to prove the validity of a formula, all the entries in the truth table may 

not be relevant.  

● Other methods which are concerned with proofs and deductions of logical formula are as 

follows:  

− Natural Deductive System   

− Axiomatic System 

− Semantic Tableaux Method 

− Resolution Refutation Method 

3. Natural deduction method – ND 

● ND is based on the set of few deductive inference rules.   

● The name natural deductive system is given because it mimics the pattern of natural 

reasoning.  

● It has about 10 deductive inference rules. 

Conventions: 

− E  for Elimination. 

− P, Pk  , (1   k   n)  are  atoms. 
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− k, (1   k   n)   and    are  formulae.  

Natural Deduction  Rules: 

Rule 1:  I- (Introducing   )   

  I- : If  P1, P2, …, Pn  then P1  P2   … Pn    

Interpretation: If we have hypothesized or proved  P1, P2, … and Pn , then their conjunction   P1 

 P2  … Pn   is also proved or derived. 

Rule 2:  E- ( Eliminating  ) 

 E- :  If  P1  P2  … Pn   then Pi ( 1   i   n)   

Interpretation: If we have proved P1  P2  … Pn , then any Pi is also proved or derived. This 

rule shows that  can be eliminated to yield one of its conjuncts. 

Rule 3:  I-V   (Introducing V)  

 I-V  : If Pi ( 1   i   n) then P1V P2 V …V Pn    

Interpretation: If any Pi (1  i   n) is   proved, then P1V …V Pn is also proved. 

Rule 4:  E-V ( Eliminating  V) 

 E-V : If P1 V … V Pn, P1  P, … , Pn  P then P   

Interpretation: If P1 V … V Pn, P1  P, … , and Pn  P are proved, then P is proved. 

Rule 5: I-    (Introducing  )  

 I-   : If from  1,  …, n  infer  is proved then 1  … n   is proved 

Interpretation:   If given 1, 2, …and n to be proved and from these we deduce  then 1  2 

… n    is also proved. 

Rule 6: E-    (Eliminating  )  - Modus Ponen  

E-   : If  P1  P,  P1   then P   

Rule 7:  I-  (Introducing   ) 

I-   : If P1  P2,  P2  P1   then P1   P2   

Rule 8: E-  (Elimination   ) 
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 E-   : If P1   P2  then P1   P2 ,   P2      P1   

Rule 9:  I- ~   (Introducing  ~) 

 I- ~   : If from  P  infer  P1    ~ P1 is proved then ~P is proved   

Rule 10:  E- ~  (Eliminating  ~) 

 E- ~  : If from  ~ P  infer  P1     ~ P1 is proved then P is proved  

● If a formula   is derived / proved from a set of premises / hypotheses { 1,…, n },  

− then one can write it as from  1,  …, n    infer .  

● In natural deductive system,  

− a theorem  to be proved should have a form from  1, …, n    infer .  

● Theorem infer  means that  

− there are no premises and  is true under all interpretations i.e.,  is a tautology or 

valid.  

● If we assume that      is a premise, then we conclude that  is proved if  is given 

i.e.,  

− if ‘from  infer ’ is a theorem then      is concluded.     

− The converse of this is also true. 

Deduction Theorem: To prove a formula 1  2 …  n    ,  it is sufficient to prove a 

theorem   from 1, 2, …, n    infer . 

Example1: Prove that  P(QVR) follows from  PQ  

Solution: This problem  is restated in natural deductive system as "from P Q  infer P  (Q V 

R)". The formal proof is given as follows: 

{Theorem}  from P Q  infer P  (Q V R)  

{ premise}  P  Q    (1)   

{ E- , (1)}  P    (2)  

{ E- , (1)}  Q    (3)   
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{ I-V , (3) }  Q V R    (4) 

{ I-, ( 2, 4)}   P  (Q V R)  Conclusion 

Example2:  Prove the following theorem: 

   infer ((Q  P)   (Q  R))  (Q  (P   R))  

Solution:  

● In order to prove infer ((Q   P) (Q   R))   (Q   (P    R)), prove a theorem 

from  {Q   P,  Q    R} infer  Q   (P    R).   

● Further, to prove Q  (P  R), prove a sub theorem from Q infer  P  R  

{Theorem} from  Q  P,   Q  R  infer Q  (P   R)  

{ premise 1}    Q   P  (1) 

{ premise 2}    Q    R  (2) 

{ sub theorem} from  Q  infer    P    R  (3) 

{ premise }    Q  (3.1) 

 { E-  , (1, 3.1) }   P  (3.2) 

{E- , (2, 3.1) }    R  (3.3) 

{ I-, (3.2,3.3) }    P    R  (3.4) 

{ I- , ( 3 )}     Q   (P    R) Conclusion 

4. Axiomatic System for Propositional Logic: 

● It is based on the set of only three axioms and  one rule of deduction.  

− It is minimal in structure but as powerful as the truth table and natural deduction 

approaches.  

− The proofs of the theorems are often difficult and require a guess in selection of 

appropriate axiom(s) and rules.   

− These methods basically require forward chaining strategy where we start with 

the given hypotheses and prove the goal.  
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Axiom1 (A1):   (    ) 

Axiom2 (A2):  ( ()) ((  )  (   )) 

Axiom3 (A3): (~     ~ )   (    ) 

Modus Ponen (MP)  defined as follows: 

 Hypotheses:        and   Consequent:  

 

Examples: Establish the following: 

1. {Q} |-(PQ)  i.e., PQ is a deductive consequence of {Q}. 

  {Hypothesis}  Q    (1) 

  {Axiom A1} Q   (P   Q)   (2) 

  {MP, (1,2)} P   Q    proved  

2. { P   Q,  Q    R }  |-   ( P     R ) i.e.,  P   R is a deductive consequence  

of { P   Q,  Q    R }. 

  {Hypothesis} P   Q    (1) 

  {Hypothesis} Q    R    (2) 

  {Axiom A1}    (Q  R)  (P   (Q    R)) (3) 

  {MP, (2, 3)} P   (Q    R)   (4) 

  {Axiom A2} (P   (Q    R))   

     ((P   Q)   (P   R))  (5) 

  {MP , (4, 5)} (P   Q)   (P   R)  (6) 

  {MP, (1, 6)} P   R      proved  
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4.1.Deduction Theorems in Axiomatic System 

Deduction Theorem: 

 If   is a set of hypotheses and  and  are well-formed formulae , then {   } |-  

implies                 |- (    ). 

Converse of deduction theorem:   

 Given    |-  (   ),  

 we can prove   {     } |- . 

Useful Tips 

1. Given , we can easily prove    for any well-formed formulae   and .   

2.  Useful tip 

 If      is to be proved, then include  in the set of hypotheses  and derive  from  

the set {  }. Then using deduction theorem, we conclude    . 

Example:  Prove  ~ P  (P  Q) using deduction theorem. 

Proof:  Prove  {~ P} |-  (P  Q) and   

 |- ~ P(PQ) follows from deduction theorem. 

5. Semantic Tableaux System in PL 

● Earlier approaches require  

− construction of proof of a formula  from given set of formulae and are called 

direct methods.  

● In semantic tableaux,  

− the set of rules are applied systematically on a formula or set of formulae to 

establish its consistency or inconsistency. 

● Semantic tableau  

− binary tree constructed by using semantic rules  with a formula as a root  

● Assume  and  be any two formulae.     
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5.1. Semantic Tableaux Rules  
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5.2.Consistency and Inconsistency 

● If an atom P and ~ P appear on a same path of a semantic tableau,  

− then inconsistency is indicated and such path is said to be contradictory or 

closed (finished) path.  

− Even if one path remains non contradictory or unclosed (open), then the formula 

 at the root of a tableau is consistent. 

● Contradictory tableau (or finished tableau): 

− It defined to be a tableau in which all the paths are contradictory or closed 

(finished).  

● If a tableau for a formula  at the root is a contradictory tableau,  

− then a formula  is said to be inconsistent.   
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6. Resolution Refutation in PL 

● Resolution refutation: Another simple method to prove a formula by contradiction. 

● Here negation of goal is added to given set of clauses. 

− If there is a refutation in new set using resolution principle then goal is proved  

● During resolution we need to identify two clauses,  

− one with positive atom (P) and other with negative atom (~ P) for the  application 

of resolution rule. 

● Resolution is based on modus ponen inference rule.  

6.1.Disjunctive & Conjunctive Normal Forms 

● Disjunctive Normal Form (DNF): A formula in the form (L11   …..  L1n  ) V  ..… V 

(Lm1   …..  Lmk ), where all Lij  are literals.  

− Disjunctive Normal Form is disjunction of conjunctions. 

● Conjunctive Normal Form (CNF): A formula in the form (L11 V ….. V L1n  )  ……   

(Lp1 V ….. V Lpm ) , where all Lij  are literals.  
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− CNF is conjunction of disjunctions or 

− CNF is conjunction of clauses 

● Clause:  It is a formula of the form  (L1V … V Lm),  where each Lk is a positive or 

negative atom.   

6.2.Conversion of a Formula to its CNF 

● Each PL formula can be converted into its equivalent  CNF. 

● Use following equivalence laws: 

− P    Q   ~ P  V  Q 

− P  Q    ( P  Q)   ( Q  P) 

 Double Negation 

− ~ ~ P        P     

 (De Morgan’s law) 

− ~ ( P   Q)  ~  P   V   ~  Q   

− ~ ( P  V  Q)      ~  P       ~  Q 

 (Distributive law) 

P  V  (Q    R)   (P   V  Q)    (P   V  R) 

6.3Resolvent of Clauses 

● If  two clauses C1 and C2 contain a complementary pair of literals {L, ~L},  

− then these clauses may be resolved together by deleting L from C1 and ~ L from 

C2 and constructing a new clause by the disjunction of the remaining literals in C1 

and C2.   

● The new clause thus generated is called resolvent of C1  and C2 .  

− Here  C1  and C2   are called parents of resolved clause.   

● Inverted binary tree is generated with the last node (root) of the binary tree to be a 

resolvent.  

This is also called resolution tree. 
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6.4Logical Consequence 

● Theorem1: If C is a resolvent of  two clauses C1  and C2 , then C is a logical consequence 

of {C1 , C2 }. 

− A deduction of an empty clause (or resolvent as contradiction) from a set S of 

clauses is called a resolution refutation of S. 

●  Theorem2: Let  S be a set of clauses. A clause C is a logical consequence of  S iff the 

set S’= S  {~ C} is unsatisfiable.  

− In other words, C is a logical consequence of a given set S iff an empty clause is 

deduced  from the set  S'. 
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